Optimization of microwave pre-treatment conditions for maximum lignin recovery from rice husk using central composite design (CCD) by response surface methodology (RSM)

Authors

  • Rohaya Mohd Noor Faculty of Science, Department of Bioscience, Universiti Teknologi Malaysia, Malaysia
  • Madihah Md Salleh Faculty of Science, Department of Bioscience, Universiti Teknologi Malaysia, Malaysia
  • Adibah Yahya Faculty of Science, Department of Bioscience, Universiti Teknologi Malaysia, Malaysia
  • Huszalina Hussin Faculty of Science, Department of Bioscience, Universiti Teknologi Malaysia, Malaysia
  • Ahmed Ibrahim Galadima Biological Sciences Department, Federal University of Kashere, Nigeria

DOI:

https://doi.org/10.6084/rjas.v1i2.454

Keywords:

Central composite design, lignin recovery, microwave, response surface methodology, rice husk

Abstract

Response surface methodology based on the central composite design (CCD) was applied to investigate the optimum conditions for lignin recovery from rice husk using microwave pre-treatment. Three operating variables namely microwave irradiation time (min), solid loading (%) and microwave power (Watt), with a total of 20 experiment conditions were conducted to optimize the interaction effects of these variables. The results reported that the second-order model was sufficient for all the independent variables on the response with R2 = 0.9861. Response Surface Methodology predicted a maximum lignin recovery of 34.9076% at optimum conditions for microwave irradiation time, solid loading and microwave power were 16.57 min, 9.66%, and 664 Watt respectively. An experiment was run at the optimal condition and lignin recovery of 33.1667% was obtained. The predicted result was thus experimentally verified. The obtained lignin was characterized by Fourier Transform Infrared Spectroscopy (FTIR), Hydrogen Nuclear Magnetic Resonance (1H NMR) and Carbon Nuclear Magnetic Resonance (13C NMR). The lignin produced from microwave pretreatment showed the presence of varieties of functional groups and potentially used for future applications.

References

Akhtar, N., Goyal, D.and Goyal, A. (2017). Characterization of microwave-alkali-acid pre-treated rice straw for optimization of ethanol production via simultaneous saccharification and fermentation (SSF). Energy Conversion and Management, 141, 133-144.

Antony, J., Chou, T.-Y.and Ghosh, S. (2003). Training for design of experiments. Work study, 52(7), 341-346.

Bi, P., Wang, J., Zhang, Y., Jiang, P., Wu, X., Liu, J., Xue, H., Wang, T.and Li, Q. (2015). From lignin to cycloparaffins and aromatics: directional synthesis of jet and diesel fuel range biofuels using biomass. Bioresour Technol, 183, 10-17.

Chen, G., Chen, J., Li, J., Guo, S., Srinivasakannan, C.and Peng, J. (2012). Optimization of combined microwave pretreatment–magnetic separation parameters of ilmenite using response surface methodology. Powder technology, 232, 58-63.

Cheng, F.and Brewer, C. E. (2017). Producing jet fuel from biomass lignin: Potential pathways to alkyl-benzenes and cycloalkanes. Renewable and Sustainable Energy Reviews, 72, 673-722.

Cybulska, I., Brudecki, G., Rosentrater, K., Julson, J. L.and Lei, H. (2012). Comparative study of organosolv lignin extracted from prairie cordgrass, switchgrass and corn stover. Bioresource Technology, 118, 30-36.

da Rosa, M. P., Beck, P. H., Müller, D. G., Moreira, J. B., da Silva, J. S.and Durigon, A. M. M. (2017). Extraction of organosolv lignin from rice husk under reflux conditions. Biological and Chemical Research, 87-98.

Dávila, I., Remón, J., Gullón, P., Labidi, J.and Budarin, V. (2019). Production and characterization of lignin and cellulose fractions obtained from pretreated vine shoots by microwave assisted alkali treatment. Bioresource technology, 289, 121726.

de Carvalho Oliveira, F., Srinivas, K., Helms, G. L., Isern, N. G., Cort, J. R., Gonçalves, A. R.and Ahring, B. K. (2018). Characterization of coffee (Coffea arabica) husk lignin and degradation products obtained after oxygen and alkali addition. Bioresource technology, 257, 172-180.

de Gonzalo, G., Colpa, D. I., Habib, M. H.and Fraaije, M. W. (2016). Bacterial enzymes involved in lignin degradation. Journal of biotechnology, 236, 110-119.

Di Blasi, C., Signorelli, G., Di Russo, C.and Rea, G. (1999). Product distribution from pyrolysis of wood and agricultural residues. Industrial & Engineering Chemistry Research, 38(6), 2216-2224.

Ding, J., Shi, S.and Yu, H. (2016). Study on modification of lignin as dispersant of aqueous graphene suspension and corrosion performance in waterborne G/epoxy coating. International Journal of Advanced Engineering Research and Science, 3(9).

El Hage, R., Brosse, N., Chrusciel, L., Sanchez, C., Sannigrahi, P.and Ragauskas, A. (2009). Characterization of milled wood lignin and ethanol organosolv lignin from miscanthus. Polymer Degradation and Stability, 94(10), 1632-1638.

Ethaib, S., Omar, R., Mazlina, M. K. S., Radiah, A. B. D.and Syafiie, S. (2016). Microwave-assisted dilute acid pretreatment and enzymatic hydrolysis of sago palm bark. BioResources, 11(3), 5687-5702.

Farid, M., El-Deen, A.and Shata, H. (2014). Optimization of microwave pretreatment and enzymatic hydrolysis of pith bagasse with Trichoderma cellulase.

Fernandez-Rodriguez, J., Erdocia, X., Sanchez, C., Alriols, M. G.and Labidi, J. (2017). Lignin depolymerization for phenolic monomers production by sustainable processes. Journal of energy chemistry, 26(4), 622-631.

Gonçalves, F. A., Ruiz, H. A., dos Santos, E. S., Teixeira, J. A.and de Macedo, G. R. (2016). Bioethanol production by Saccharomyces cerevisiae, Pichia stipitis and Zymomonas mobilis from delignified coconut fibre mature and lignin extraction according to biorefinery concept. Renewable energy, 94, 353-365.

Gong, G., Liu, D.and Huang, Y. (2010). Microwave-assisted organic acid pretreatment for enzymatic hydrolysis of rice straw. Biosystems engineering, 107(2), 67-73.

Gottipati, R.and Mishra, S. (2010). Process optimization of adsorption of Cr (VI) on activated carbons prepared from plant precursors by a two-level full factorial design. Chemical Engineering Journal, 160(1), 99-107.

He, W. M., Zhang, Y. Q.and Fatehi, P. (2016). Sulfomethylated kraft lignin as a flocculant for cationic dye. Colloids and Surfaces a-Physicochemical and Engineering Aspects, 503, 19-27.

Holmelid, B., Barth, T., Brusletto, R.and Kleinert, M. (2017). Production of monomeric phenols by formic acid assisted hydrous liquefaction of lignin. Biomass and Bioenergy, 105, 298-309.

Jaliliannosrati, H., Amin, N. A. S., Talebian-Kiakalaieh, A.and Noshadi, I. (2013). Microwave assisted biodiesel production from Jatropha curcas L. seed by two-step in situ process: optimization using response surface methodology. Bioresource technology, 136, 565-573.

Khandanlou, R., Ngoh, G. C.and Chong, W. T. (2016). Feasibility study and structural analysis of cellulose isolated from rice husk: Microwave irradiation, optimization, and treatment process scheme. BioResources, 11(3), 5751-5766.

Kim, J.-Y., Shin, E.-J., Eom, I.-Y., Won, K., Kim, Y. H., Choi, D., Choi, I.-G.and Choi, J. W. (2011). Structural features of lignin macromolecules extracted with ionic liquid from poplar wood. Bioresource Technology, 102(19), 9020-9025.

Lai, L. W., Idris, A.and Yusof, N. M. (2014). Lignin extraction from oil palm Ttrunk by microwave-alkali technique. Malaysian Journal of Fundamental and Applied Sciences, 10(2).

Latif, N. H. A., Rahim, A. A., Brosse, N.and Hussin, M. H. (2019). The structural characterization and antioxidant properties of oil palm fronds lignin incorporated with p-hydroxyacetophenone. International journal of biological macromolecules, 130, 947-957.

Lin, L., Yan, R., Liu, Y.and Jiang, W. (2010). In-depth investigation of enzymatic hydrolysis of biomass wastes based on three major components: cellulose, hemicellulose and lignin. Bioresource technology, 101(21), 8217-8223.

Ma, H., Liu, W.-W., Chen, X., Wu, Y.-J.and Yu, Z.-L. (2009). Enhanced enzymatic saccharification of rice straw by microwave pretreatment. Bioresource technology, 100(3), 1279-1284.

Ma’ruf, A., Pramudono, B.and Aryanti, N. (2017). Optimization of lignin extraction from rice husk by alkaline hydrogen peroxide using response surface methodology. Rasayan J. Chem, 10(2), 407-414.

Mohtar, S., Busu, T. T. M., Noor, A. M., Shaari, N., Yusoff, N., Bustam, M., Mutalib, M. A.and Mat, H. (2015). Extraction and characterization of lignin from oil palm biomass via ionic liquid dissolution and non-toxic aluminium potassium sulfate dodecahydrate precipitation processes. Bioresource technology, 192, 212-218.

Monteil-Rivera, F., Huang, G. H., Paquet, L., Deschamps, S., Beaulieu, C.and Hawari, J. (2012). Microwave-assisted extraction of lignin from triticale straw: Optimization and microwave effects. Bioresource Technology, 104, 775-782.

Morales, A., Gullón, B., Dávila, I., Eibes, G., Labidi, J.and Gullón, P. (2018). Optimization of alkaline pretreatment for the co-production of biopolymer lignin and bioethanol from chestnut shells following a biorefinery approach. Industrial crops and products, 124, 582-592.

Oghbaie, M., Mirshokraie, S., Massoudi, A.and Partovi, T. (2014). Extraction of lignins using a modified dioxane method and an ionic liquid and comparative molecular weight and structural studies by chromatography and ¹³C NMR spectroscopy techniques. Journal of Modern Chemistry, 2(5), 36-40.

Petersson, F. (2014). Separation of lignin from kraft black liquor using the SunMembrane process: An investigation on the precipitation and filtration parameters.

Piña, I., Ysambertt, F., Perez, D.and Lopez, K. (2015). Study of antioxidant effectiveness of Kraft lignin in HDPE. Journal of Polymers, 2015.

Pinheiro, F. G. C., Soares, A. K. L., Santaella, S. T., Silva, L. M. A. E., Canuto, K. M., Caceres, C. A., Rosa, M. D., Feitosa, J. P. D.and Leitao, R. C. (2017). Optimization of the acetosolv extraction of lignin from sugarcane bagasse for phenolic resin production. Industrial crops and products, 96, 80-90.

Pinkert, A., Goeke, D. F., Marsh, K. N.and Pang, S. (2011). Extracting wood lignin without dissolving or degrading cellulose: investigations on the use of food additive-derived ionic liquids. Green Chemistry, 13(11), 3124-3136.

Prado, R., Erdocia, X.and Labidi, J. (2013). Lignin extraction and purification with ionic liquids. Journal of Chemical Technology & Biotechnology, 88(7), 1248-1257.

Prado, R., Erdocia, X.and Labidi, J. (2016). Study of the influence of reutilization ionic liquid on lignin extraction. Journal of cleaner production, 111, 125-132.

Rashid, T., Gnanasundaram, N., Appusamy, A., Kait, C. F.and Thanabalan, M. (2018). Enhanced lignin extraction from different species of oil palm biomass: Kinetics and optimization of extraction conditions. Industrial crops and products, 116, 122-136.

Saha, K., Dasgupta, J., Chakraborty, S., Antunes, F. A. F., Sikder, J., Curcio, S., dos Santos, J. C., Arafat, H. A.and da Silva, S. S. (2017). Optimization of lignin recovery from sugarcane bagasse using ionic liquid aided pretreatment. Cellulose, 24(8), 3191-3207.

Saha, K., Dwibedi, P., Ghosh, A., Sikder, J., Chakraborty, S.and Curcio, S. (2018). Extraction of lignin, structural characterization and bioconversion of sugarcane bagasse after ionic liquid assisted pretreatment. 3 Biotech, 8(8), 374.

She, D., Nie, X., Xu, F., Geng, Z., Jia, H., Jones, G.and Baird, M. (2012). Physico-chemical characterization of different alcohol-soluble lignins from rice straw. Cellulose Chemistry and Technology, 46(3), 207.

Singh, R., Tiwari, S., Srivastava, M.and Shukla, A. (2013). Performance study of combined microwave and acid pretreatment method for enhancing enzymatic digestibility of rice straw for bioethanol production. Plant Knowledge Journal, 2(4), 157.

Tachon, N., Benjelloun-Mlayah, B.and Delmas, M. (2016). Organosolv Wheat Straw Lignin as a Phenol Substitute for Green Phenolic Resins. BioResources, 11(3), 5797-5815.

Wallberg, O., Linde, M.and Jönsson, A.-S. (2006). Extraction of lignin and hemicelluloses from kraft black liquor. Desalination, 199(1-3), 413-414.

Wang, Y., Liu, W., Zhang, L.and Hou, Q. (2019). Characterization and comparison of lignin derived from corncob residues to better understand its potential applications. International journal of biological macromolecules, 134, 20-27.

Watkins, D., Hosur, M. N. M., Tcherbi-Narteh, A.and Jeelani, S. (2015). Extraction and characterization of lignin from different biomass resources. Journal of Materials Research and Technology-Jmr&T, 4(1), 26-32.

Wen, J.-L., Yuan, T.-Q., Sun, S.-L., Xu, F.and Sun, R.-C. (2014). Understanding the chemical transformations of lignin during ionic liquid pretreatment. Green Chemistry, 16(1), 181-190.

Wildschut, J., Smit, A. T., Reith, J. H.and Huijgen, W. J. (2013). Ethanol-based organosolv fractionation of wheat straw for the production of lignin and enzymatically digestible cellulose. Bioresource technology, 135, 58-66.

Xie, J., Hse, C. Y., Shupe, T. F.and Hu, T. (2015). Physicochemical characterization of lignin recovered from microwave‐assisted delignified lignocellulosic biomass for use in biobased materials. Journal of Applied Polymer Science, 132(40).

Zhou, L., Budarin, V., Fan, J., Sloan, R.and Macquarrie, D. (2017). Efficient method of lignin isolation using microwave-assisted acidolysis and characterization of the residual lignin. ACS Sustainable Chemistry & Engineering, 5(5), 3768-3774.

Zhou, S., Liu, L., Wang, B., Xu, F.and Sun, R. (2012). Microwave-enhanced extraction of lignin from birch in formic acid: Structural characterization and antioxidant activity study. Process biochemistry, 47(12), 1799-1806.

Zhu, Z., Macquarrie, D. J., Simister, R., Gomez, L. D.and McQueen-Mason, S. J. (2015). Microwave assisted chemical pretreatment of Miscanthus under different temperature regimes. Sustainable Chemical Processes, 3(1), 15.

Downloads

Published

2020-10-12

How to Cite

Optimization of microwave pre-treatment conditions for maximum lignin recovery from rice husk using central composite design (CCD) by response surface methodology (RSM). (2020). Research Journal in Advanced Sciences, 1(2), 61-83. https://doi.org/10.6084/rjas.v1i2.454