Developing and Testing Methylated Nano-Structured Dipeptides that Inhibit Src Kinase Activity in vitro for Anti-Cancer Applications

##plugins.themes.bootstrap3.article.main##

Alaa Nahhas
thomas webster
alrayan nahhas

Abstract

Here, with the aim of developing a novel anti-cancer treatment, seven dipeptides were designed that contained methylated tryptophan and/or methylated arginine and were produced using Fmoc solid-phase peptide synthesis. Overexpression of the Src tyrosine kinase enzyme has been implicated in the development of different cancers. Dipeptides containing unnatural amino acids such as methylated arginine (RCH3), dimethylated arginine (R(CH3)2), and/or methylated tryptophan (WCH3) residues have been earlier shown to inhibit the Src kinase enzyme. In this study, three such dipeptides W-RCH3, WCH3-RCH3, and W-R(CH3)2 were tested and were found to have IC50 values (the concentration at which 50% inhibition occurs) of 510 nM, 916 nM, and 1 μM, respectively, in acellular assays. The IC50 values of these dipeptides are considered low as in nanomolar concentrations compared to the cyclic penta to nano W-R ([W-R]5-[W-R]9) that are in the micromolar concentration scale for Src kinase.1 The IC50 values of these cyclic peptides are 0.81, 0.57, 0.35, 0.33, and 0.21 µM, respectively. 1 However, the unmethylated versions of these peptides did not show any inhibitory activity against Src kinase. All of these dipeptides (50 mM) did not show any cytotoxicity upon incubation up to 72 h with three different cancer cell lines, including leukemia (CCRF-CEM), breast adenocarcinoma(MDA-MB-231), and ovarian adenocarcinoma (SK-OV-3) cell lines, indicating the limited permeability of the peptides through the cell membrane. Further study is therefore needed to improve the permeability of these peptides for anticancer applications such as using a peptide carrier or additional peptide functionalization. In summary, this study provides a protocol to synthesize and test peptides that inhibit Src kinase activity and, thus, possess promising anticancer ability as demonstrated using acellular and cellular assays.

##plugins.themes.bootstrap3.displayStats.downloads##

##plugins.themes.bootstrap3.displayStats.noStats##

##plugins.themes.bootstrap3.article.details##

How to Cite
Nahhas, A., webster , thomas, & nahhas, alrayan. (2024). Developing and Testing Methylated Nano-Structured Dipeptides that Inhibit Src Kinase Activity in vitro for Anti-Cancer Applications. Research Journal in Medical and Health Sciences, 5(1). https://doi.org/10.58256/fawcje37
Section
Articles

How to Cite

Nahhas, A., webster , thomas, & nahhas, alrayan. (2024). Developing and Testing Methylated Nano-Structured Dipeptides that Inhibit Src Kinase Activity in vitro for Anti-Cancer Applications. Research Journal in Medical and Health Sciences, 5(1). https://doi.org/10.58256/fawcje37

References

Sanner, M. F. et al. Cyclic Peptides as Protein Kinase Inhibitors: Structure-Activity Relationship and Molecular Modeling. J Chem Inf Model. 61 (6), 3015-3026, doi:10.1021/acs.jcim.1c00320, (2021).

Organization, W. H. Breast cancer awareness month 2021, <https://www.iarc.who.int/featured-news/breast-cancer-awareness-month-2021/> (2021).

Organization, W. H. Cancer. (2022).

Sung, H. et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin. 71 (3), 209-249, doi:10.3322/caac.21660, (2021).

Negi, P., Cheke, R. S. & Patil, V. M. Recent advances in pharmacological diversification of Src family kinase inhibitors. Egyptian Journal of Medical Human Genetics. 22 (1), 52, doi:10.1186/s43042-021-00172-x, (2021).

Huang, X. L. et al. Role of receptor tyrosine kinases mediated signal transduction pathways in tumor growth and angiogenesis—New insight and futuristic vision. International Journal of Biological Macromolecules. 180 739-752 (2021).

Mohammed, S. et al. Sublethal doxorubicin promotes migration and invasion of breast cancer cells: role of Src Family non-receptor tyrosine kinases. Breast Cancer Research. 23 (1), 1-20 (2021).

Biscardi, J. S., Ishizawar, R. C., Silva, C. M. & Parsons, S. J. Tyrosine kinase signalling in breast cancer: epidermal growth factor receptor and c-Src interactions in breast cancer. Breast cancer research. 2 (3), 1-8 (2000).

Ortiz, M. A. et al. Src family kinases, adaptor proteins and the actin cytoskeleton in epithelial-to-mesenchymal transition. Cell Communication and Signaling. 19 (1), 67, doi:10.1186/s12964-021-00750-x, (2021).

Hill, Z. B., Perera, B. G., Andrews, S. S. & Maly, D. J. Targeting diverse signaling interaction sites allows the rapid generation of bivalent kinase inhibitors. ACS Chem Biol. 7 (3), 487-495, doi:10.1021/cb200387g, (2012).

Wu, S. & Fu, L. Tyrosine kinase inhibitors enhanced the efficacy of conventional chemotherapeutic agent in multidrug resistant cancer cells. Molecular Cancer. 17 (1), 25, doi:10.1186/s12943-018-0775-3, (2018).

Ayala-Aguilera, C. C. et al. Small Molecule Kinase Inhibitor Drugs (1995–2021): Medical Indication, Pharmacology, and Synthesis. Journal of Medicinal Chemistry. 65 (2), 1047-1131, doi:10.1021/acs.jmedchem.1c00963, (2022).

Lyczek, A. et al. Mutation in Abl kinase with altered drug-binding kinetics indicates a novel mechanism of imatinib resistance. Proceedings of the National Academy of Sciences. 118 (46), e2111451118, doi:doi:10.1073/pnas.2111451118, (2021).

Musumeci, F., Schenone, S., Brullo, C. & Botta, M. An update on dual Src/Abl inhibitors. Future Med Chem. 4 (6), 799-822, doi:10.4155/fmc.12.29, (2012).

Roskoski Jr, R. Properties of FDA-approved small molecule protein kinase inhibitors: A 2020 update. Pharmacological research. 152 104609 (2020).

Cohen, P., Cross, D. & Jänne, P. A. Kinase drug discovery 20 years after imatinib: progress and future directions. Nat Rev Drug Discov. 20 (7), 551-569, doi:10.1038/s41573-021-00195-4, (2021).

Feng, S., Chen, J. K., Yu, H., Simon, J. A. & Schreiber, S. L. Two binding orientations for peptides to the Src SH3 domain: development of a general model for SH3-ligand interactions. Science. 266 (5188), 1241-1247, doi:10.1126/science.7526465, (1994).

Alexandropoulos, K., Cheng, G. & Baltimore, D. Proline-rich sequences that bind to Src homology 3 domains with individual specificities. Proceedings of the National Academy of Sciences of the United States of America. 92 (8), 3110-3114, doi:10.1073/pnas.92.8.3110, (1995).

Feng, S., Kasahara, C., Rickles, R. J. & Schreiber, S. L. Specific interactions outside the proline-rich core of two classes of Src homology 3 ligands. 92 (26), 12408-12415, doi:10.1073/pnas.92.26.12408 %J Proceedings of the National Academy of Sciences, (1995).

Polverini, E., Rangaraj, G., Libich, D. S., Boggs, J. M. & Harauz, G. Binding of the Proline-Rich Segment of Myelin Basic Protein to SH3 Domains: Spectroscopic, Microarray, and Modeling Studies of Ligand Conformation and Effects of Posttranslational Modifications. Biochemistry. 47 (1), 267-282, doi:10.1021/bi701336n, (2008).

Weng, Z. et al. Structure-function analysis of SH3 domains: SH3 binding specificity altered by single amino acid substitutions. Mol Cell Biol. 15 (10), 5627-5634, doi:10.1128/mcb.15.10.5627, (1995).

Mandal, D., Nasrolahi Shirazi, A. & Parang, K. Cell-penetrating homochiral cyclic peptides as nuclear-targeting molecular transporters. Angew Chem Int Ed Engl. 50 (41), 9633-9637, doi:10.1002/anie.201102572, (2011).

Waleed M. Hussein, M. S., Istvan Toth. Peptide Synthesis: Methods and Protocols. (2020).

Chhikara, B. S. et al. Phenylpyrazalopyrimidines as Tyrosine Kinase Inhibitors: Synthesis, Antiproliferative Activity, and Molecular Simulations. Molecules. 25 (9), doi:10.3390/molecules25092135, (2020).

Nahhas, A. F., Nahhas, A. F. & Webster, T. J. The Physical Properties of Tripeptide Stereocomplex Nano-Formations. J Biomed Nanotechnol. 16 (10), 1495-1503, doi:10.1166/jbn.2020.2985, (2020).

Nahhas, A. F., Chang, R. & Webster, T. J. Introducing Unnatural Amino Acids-Containing Tripeptides as Antimicrobial and Anticancer Agents. Journal of Biomedical Nanotechnology. 14 (5), 987-993, doi:10.1166/jbn.2018.2555, (2018).

Deng, G. et al. Tryptophan-containing dipeptide derivatives as potent PPARgamma antagonists: design, synthesis, biological evaluation, and molecular modeling. Eur J Med Chem. 43 (12), 2699-2716, doi:10.1016/j.ejmech.2008.01.032, (2008).

Chetty, V. T. & Sharma, A. M. Can PPARγ agonists have a role in the management of obesity-related hypertension? Vascular Pharmacology. 45 (1), 46-53, doi:https://doi.org/10.1016/j.vph.2005.11.010, (2006).

Skeggs, L. T., Jr., Kahn, J. R. & Shumway, N. P. The preparation and function of the hypertensin-converting enzyme. J Exp Med. 103 (3), 295-299, doi:10.1084/jem.103.3.295, (1956).

Lunow, D., Kaiser, S., Brückner, S., Gotsch, A. & Henle, T. Selective release of ACE-inhibiting tryptophan-containing dipeptides from food proteins by enzymatic hydrolysis. European Food Research and Technology. 237 (1), 27-37, doi:10.1007/s00217-013-2014-x, (2013).

Weber, J., Wilke-Mounts, S., Grell, E. & Senior, A. E. Tryptophan fluorescence provides a direct probe of nucleotide binding in the noncatalytic sites of Escherichia coli F1-ATPase. J Biol Chem. 269 (15), 11261-11268 (1994).

Iavarone, A. T., Patriksson, A., van der Spoel, D. & Parks, J. H. Fluorescence Probe of Trp-Cage Protein Conformation in Solution and in Gas Phase. Journal of the American Chemical Society. 129 (21), 6726-6735, doi:10.1021/ja065092s, (2007).

Nongonierma, A. B. & Fitzgerald, R. J. Inhibition of dipeptidyl peptidase IV (DPP-IV) by tryptophan containing dipeptides. Food Funct. 4 (12), 1843-1849, doi:10.1039/c3fo60262a, (2013).

Bjelke, J. R. et al. Dipeptidyl peptidases 8 and 9: specificity and molecular characterization compared with dipeptidyl peptidase IV. The Biochemical journal. 396 (2), 391-399, doi:10.1042/bj20060079, (2006).