Antibiotic residues in beef from the Public Slaughterhouse, Markets and Supermarkets of Lubumbashi


Kapopo Mwewa Christelle
Okombe Embeya Victor
Mukanda Gedeon Kadima
Mulang Irung Raphael
Mbutshu Lukuke Hendrick
Kahumba Byanga Joh
Ntambue Mukengeshayi Abel
Malonga Kaj Francoise



Background: Antibiotics are critical in managing infectious diseases in humans and animals globally. However, their irrational use in curative, preventive treatment or supplementation in animal feed has led to the development of antibiotic-resistant microbes. This study aims to improve food safety by researching and measuring three antibiotic residues, namely Oxytetracycline, Tetracycline and Ceftiofur, in beef from public slaughterhouses, markets and supermarkets in the city of Lubumbashi.

Methods: This was a cross-sectional study (from April 1 to September 1, 2020). The study population consisted of beef carcasses, with 272 samples taken from public abattoir, markets and supermarkets.

Physicochemical data were the results of analyses of meat samples. The search for and the dosage of the three antibiotics (Oxytetracycline, Tetracycline and Ceftiofur) were carried out on all the meat samples. Only the sample concentrations caught our attention. According to Beer Lambert's law, the UV/VIS T80 spectrophotometer was used to determine the concentrations of antibiotic residues in beef.

Results: 99.6% (271/272), 97.1% (264/272), and 5.1% (14/272) of the samples showed antibiotic residues of Oxytetracycline, Tetracyclines and Ceftiofur, respectively. 1.1%; 2.3% of the samples of Oxytetracycline, and Tetracycline, respectively, showed concentrations of antibiotics going beyond the maximum residue limits. The association between the origin of animals/beef and the presence of antibiotic residues was not statistically significant (p = 0.71).

Conclusion: The presence of antibiotic residues in beef marketed in Lubumbashi is a reality. Thus, improving techniques and developing new control methods to reduce the risk of consuming meat containing antibiotic residues is recommended.

Keywords: Beef, Abattoir, Residues, MRL, Markets




How to Cite
Mwewa Christelle, K., Okombe , E. V. ., Kadima , M. G. ., Mulang, I. R. ., Mbutshu , L. H. ., Kahumba, B. J., Ntambue, M. A., & Malonga, K. F. . (2024). Antibiotic residues in beef from the Public Slaughterhouse, Markets and Supermarkets of Lubumbashi. Research Journal in Medical and Health Sciences, 5(1).

How to Cite

Mwewa Christelle, K., Okombe , E. V. ., Kadima , M. G. ., Mulang, I. R. ., Mbutshu , L. H. ., Kahumba, B. J., Ntambue, M. A., & Malonga, K. F. . (2024). Antibiotic residues in beef from the Public Slaughterhouse, Markets and Supermarkets of Lubumbashi. Research Journal in Medical and Health Sciences, 5(1).


ADEGBOYE, A. 2011. Quantitative risk assessment of oxytetracycline and tetracycline residues in slaughtered cattle from three abattoirs in Nigeria.

AGMAS, B. & ADUGNA, M. 2018. Antimicrobial residue occurrence and its public health risk of beef meat in Debre Tabor and Bahir Dar, Northwest Ethiopia. Veterinary World, 11, 902.

BADER, M. 1996. Generation of HCl, DCl, HBr, and DBr. Journal of Chemical Education, 73, A260.

BAGRÉ, T., SAMANDOULOUGOU, S., TRAORÉ, M., ILLY, D., BSADJO-TCHAMBA, G., BAWA-IBRAHIM, H., BOUDA, S., TRAORÉ, A. & BARRO, N. 2015. Détection biologique des résidus d’antibiotiques dans le lait et produits laitiers de vache consommés à Ouagadougou, Burkina Faso. Journal of Applied Biosciences, 87, 8105-8112.

BASULIRA, Y., OLET, S. A. & ALELE, P. E. 2019. Inappropriate usage of selected antimicrobials: Comparative residue proportions in rural and urban beef in Uganda. PloS one, 14, e0209006.

CAMMILLERI, G., PULVIRENTI, A., VELLA, A., MACALUSO, A., LO DICO, G. M., GIACCONE, V., GIORDANO, V., VINCIGUERRA, M., CICERO, N. & CICERO, A. 2019. Tetracycline residues in bovine muscle and liver samples from Sicily (southern Italy) by LC-MS/MS method: A Six-Year Study. Molecules, 24, 695.

CODEX, A. 2017. Maximum residue limits (MRLs) and risk management recommendations (RMRs) for residues of veterinary drugs in foods. Cac/Mrl, 2, 8.

DARWISH, W. S., ELDALY, E. A., EL-ABBASY, M. T., IKENAKA, Y., NAKAYAMA, S. & ISHIZUKA, M. 2013. Antibiotic residues in food: the African scenario. Japanese Journal of Veterinary Research, 61, S13-S22.

EZENDUKA, E. V., OBOEGBULEM, S. I., NWANTA, J. A. & ONUNKWO, J. I. 2011. Prevalence of antimicrobial residues in raw table eggs from farms and retail outlets in Enugu State, Nigeria. Tropical Animal Health and Production, 43, 557-559.

FERDOUS, M. R. A., AHMED, M. R., KHAN, S. H., MUKTA, M. A., ANIKA, T. T., HOSSAIN, M. T., ISLAM, M. Z. & RAFIQ, K. 2020. Effect of discriminate and indiscriminate use of oxytetracycline on residual status in broiler soft tissues. Veterinary World, 13, 61.

HAGUENOER, J.-M. 2010. Les résidus de médicaments présentent-ils un risque pour la santé publique? Santé publique, 22, 325-342.

HARDESTY, J. H. & ATTILI, B. 2010. Spectrophotometry and the Beer-Lambert Law: An important analytical technique in chemistry. Collin College, Department of Chemistry.

HEALTHCANADA 2017. List of maximum residue limits (MRLs) for veterinary drugs in foods. Health Canada Ottawa Ontario, Canada.

HEBBAL, M. A., LATHA, C., MENON, K. V. & DEEPA, J. 2020. Occurrence of oxytetracycline residues in milk samples from Palakkad, Kerala, India. Veterinary World, 13, 1056.

HUSSEIN, M. A. & DARWISH, W. S. 2013. Oxytetracycline residues in bovine carcasses slaughtered at Mansoura Abattoir, Egypt. Japanese Journal of Veterinary Research, 61, S44-S47.

JAGLAN, P. S., COX, B. L., ARNOLD, T. S., KUBICEK, M. F., STUART, D. J. & GILBERTSON, T. J. 1990. Liquid chromatographic determination of desfuroylceftiofur metabolite of ceftiofur as residue in cattle plasma. Journal of the Association of Official Analytical Chemists, 73, 26-30.

KANTATI, Y. 2011. Détection des résidus d’antibiotiques dans les viandes de bovins prélevées aux abattoirs de Dakar. Mémoire de master qualité des aliments de l’homme, spécialité: Produits d’origine animale, Ecole Inter-états des Sciences et Médecine vétérinaires (EISMV), Dakar, 1-15.

KIMERA, Z. I., MDEGELA, R. H., MHAIKI, C. J., KARIMURIBO, E. D., MABIKI, F., NONGA, H. E. & MWESONGO, J. 2015. Determination of oxytetracycline residues in cattle meat marketed in the Kilosa district, Tanzania: research communication. Onderstepoort Journal of Veterinary Research, 82, 1-5.

LEKSHMI, M., AMMINI, P., KUMAR, S. & VARELA, M. F. 2017. The food production environment and the development of antimicrobial resistance in human pathogens of animal origin. Microorganisms, 5, 11.

LITTLE, P. D., TIKI, W. & DEBSU, D. N. 2015. Formal or informal, legal or illegal: The ambiguous nature of cross-border livestock trade in the Horn of Africa. Journal of Borderlands Studies, 30, 405-421.

MANYI-LOH, C., MAMPHWELI, S., MEYER, E. & OKOH, A. 2018. Antibiotic use in agriculture and its consequential resistance in environmental sources: potential public health implications. Molecules, 23, 795.

MATER, N. 2014. Evaluation de l’impact (éco) toxicologique de résidus médicamenteux présents dans les effluents hospitaliers, urbains et dans l’environnement à l’aide d’une batterie de bioessais et de biomarqueurs.

MENSAH, S., KOUDANDÉ, O., SANDERS, P., LAURENTIE, M., MENSAH, G. & ABIOLA, F. 2014a. Résidus d’antibiotiques et denrées d’origine animale en Afrique: risques de santé publique. Rev. sci. tech. Off. int. Epiz, 33, 1-27.

MENSAH, S. E. P., ABOH, A., SALIFOU, S., MENSAH, G., SANDERS, P., ABIOLA, F. & KOUDANDÉ, O. 2014b. Risques dus aux résidus d’antibiotiques détectés dans le lait de vache produit dans le Centre Bénin. Journal of Applied Biosciences, 80, 7102-7112.

MGONJA, F., MOSHA, R., MABIKI, F. & CHOONGO, K. 2017. Oxytetracycline residue levels in beef in Dodoma region, Tanzania.

MOHAMED, B. W. A., TWFIG, E. M. & ATIF, E. A. 2011. Detection of antibiotics residues in beef in Ghanawa Slaughterhouse, Khartoum State, Sudan. African Journal of Food Science, 5, 574-580.

MPALA-LUTEBELE, M. A. 2013. Lubumbashi, cent ans d'histoire. Lubumbashi, cent ans d'histoire, 1-327.

NISHA, A. 2008. Antibiotic residues-a global health hazard. Veterinary world, 1, 375.

OKOMBE, E. V., LUBOYA, W. L. R., NZUZI, M. G. & PONGOMBO, S. C. 2016. Détection des résidus d’antibiotiques dans les denrées alimentaires d’origine bovine et aviaire commercialisées à Lubumbashi (RD Congo). Journal of Applied Biosciences, 102, 9763-9770.

PAOLUCCI, G., CAGNASSO, D., CASSANI, F. & PATTONO, D. 2015. Council Regulation (EC) No. 1099/2009: state of the art and its application in a local health unit in Piedmont, Italy. Italian journal of food safety, 4.

PEREIRA, R., SILER, J., BICALHO, R. & WARNICK, L. 2014. Multiresidue screening of milk withheld for sale at dairy farms in central New York State. Journal of dairy science, 97, 1513-1519.

PHARMACOPOEIA, B. 2020. The Department of Health and Social Care. British Pharmacopoeia Commission Office, London.

REGULATION, E. 1990. The Council of the European Communities: Council Regulation (EEC) No. 2377/90. Official JL, 224, 1-8.

SINGER, A. C., SHAW, H., RHODES, V. & HART, A. 2016. Review of antimicrobial resistance in the environment and its relevance to environmental regulators. Frontiers in microbiology, 7, 1728.


USFOOD, D. A. 1995. Food additives: threshold of regulation for substances used in food contact articles; final rule. 21 CFR Part 5.

WASSENAAR, T. M. 2005. Use of antimicrobial agents in veterinary medicine and implications for human health. Critical reviews in microbiology, 31, 155-169.

YANCEY JR, R., KINNEY, M., ROBERTS, B., GOODENOUGH, K., HAMEL, J. & FORD, C. 1987. Ceftiofur sodium, a broad-spectrum cephalosporin: evaluation in vitro and in vivo in mice. American journal of veterinary research, 48, 1050-1053.

ZEGHILET, N. & EL HADEF, E. O. S. 2009. Optimisation des paramètres de détection et de quantification des résidus d'antibiotiques dans la viande blanche par chromatographie liquide haute performence (HPLC).