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Public Interest Statement 

The study contrasts the estimates provided by both regression methods, using a collection 

of corollaries that are accessible to undergraduate mathematics and science students who 

have studied Least Squares Regression. 

 

1. Introduction 

The central idea behind Least Squares Regression of “y (dependent variable) on x 

(independent variable)” is to identify, in context, a “best-fitting” line associated with a 

plausible linear relationship between the coordinates of several non-collinear points: 

1 1 2 2( , ), ( , )..............., ( , )n nx y x y x y . The end result, attributed primarily to Johann Carl 

Frederick Gauss (1777-1855), is that the “best-fitting” line approximating this relationship is 

of the form * *,y m x b= +  where *m  and  *b   are functions only of the actual data values 

obtained.  Stigler (1981) provides an excellent historical presentation, along with the many 

controversies surrounding the origins of Least Squares Regression. Least Squares 

Regression has been successfully used in a variety of fields of study and carefully taught for 

more than one hundred years. Peck (2015), Peck, Olsen and Devore (2015) and Weiss (2012) 

provide excellent, modern introductions to the topic of Least Squares Regression that are 

accessible to general undergraduate audiences.  However, the companion application of 

Inverse Regression, which is sometimes also called the calibration problem, has received 

far less attention in collegiate curricula, and it is exposition of this concept that is of primary 

interest here.  Consider the following two examples where Inverse Regression could be 

valuable: 

 

Example 1:  

It is known that a certain drug is successful in lowering LDL blood cholesterol levels and 

that the number of units Y that the LDL cholesterol reading is reduced by is a linear function 

of the quantity of drug, say x, administered in a given time interval.  Suppose over a given 

time period, n patients suffering from this condition are monitored and treated at different 

levels of .ix The observations are assumed to fit the simple, linear statistical model 

i iY mx b = + +  for 1,2,...., .i n=   However, in formulating a treatment regimen, a physician 

typically measures a patient’s LDL cholesterol level and determines that it should be 

reduced by, say 0 ,y units.  The main question is how many units of the drug, say 0 ,x should 

be given?  That is, we want to estimate the drug quantity, 0x , that will reduce the patient’s 

LDL level to roughly 0y units.  In a sense, this is an “inverse” type of statistical problem, 

where a value for an independent variable is sought. 
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Example 2: 

Suppose the linear statistical model 1 0i iY a t a = + +  ( 1,2,...., )i n= governs the relationship 

between the weight Y, (in pounds) of a given breed of turkeys and time t (in weeks since 

birth, 0 15t  ), while being nourished on a certain feed supply. Here, 0a  is regarded as the 

typical turkey weight at birth and 1a denotes the weekly weight growth rate. If a turkey 

processor receives a rafter of young turkeys that have been fed this particular feed supply 

and records their weights, it is important to estimate the (usually) unknown number of 

weeks, say t0, that this rafter has been on the feeding program, before additional feeding 

and processing is initiated.  Again, this is an “inverse” type of statistical problem, where a 

value for an independent variable is sought. In each of the examples just presented, the 

response variable, Y, is easy to compute once data have been collected.  However, primary 

interest focuses on estimating the corresponding value of the explanatory variable, X. This 

problem is distinctly different from the usual Least Squares Regression set-up, and it is the 

one explored in the article. 

 

2. Brief Review of Least Squares Regression with Low and High Temperature Data 

Table 1 gives the low and high temperatures (in degrees Farenheit) for thirty-two U.S. cities 

on a given winter day. Figure 1 is the associated scatter plot with the accompanying Least 

Squares regression line of high temperature on low temperature. 

 

 
 

Table 1.  High and Low Temperatures for 32 American cities on Christmas Day of 2015

City, State High Temp Low Temp City, State High Temp Low Temp

Amarillo, TX 51 29 Miami, FL 84 77

Atlanta, GA 76 63 Milwaukee, WI 38 29

Bangor, ME 54 28 Minneapolis, MN 30 26

Billings, MT 21 9 Mobile, AL 73 70

Birmingham, AL 77 64 Montpelier, VT 51 28

Boston, MA 62 49 Nashville, TN 69 56

Buffalo, NY 48 36 New Orleans, LA 63 46

Charlotte, NC 74 63 New York, NY 66 57

Chicago, IL 46 36 Phoenix, AZ 61 43

Cincinnati, OH 53 45 Pittsburgh, PA 62 50

Concord, NH 62 31 Salt Lake City, UT 29 16

Denver, CO 28 16 San Diego, CA 60 56

Detroit, MI 50 34 San Francisco 51 40

Houston, TX 83 73 Seattle, WA 41 36

Jacksonville, FL 84 71 St. Louis, MO 52 38

Lincoln, NE 33 15 Washington, DC 69 57
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In this context, “best-fitting “ is taken to mean that the total (vertical) deviations 

from the given data points to the regression line be minimized in the squared-error sense. 

See Peck (2015) and Peck, et al., (2015). More precisely, the “best-fitting” line, say 

,
| |

y m x b
y x y x

= +   in the Least Squares sense is the unique line having slope 
|

m
y x

and intercept 

|
b

y x
satisfying 

                              ( ) ( )
2 2

1 1

( ) ( )
| |

n n

i i

y m x b y xi i i iy x y x
= =

− +  − +  m b                               (1) 

where 

                           
 

= = −  
 

          an d           ,
| | |

y
xy

x

S
m r b y m x

y x y x y xS
                          (2) 

with 

( ) ( ) ( )( )
2 21 1 1

1 1

2 2
,

1 1
,    ,    ,   ,  

( 1) ( 1) ( 1)

                                                           and  .

n n n

n n
i i i

i i

x y xy

xy
xy

x y

i i i i

i i

x x y y x x y y

x x y y S S S
n n n n n

S

S S
r

= = =

= =

− − − −

= = = = =
− − −

=


  
 

     

(3)                  

for all real numbers m and b. Here, xyr  is the sample Pearson Correlation Coefficient  

(Weiss, 2012) associated with the ordered pairs 1 1 2 2( , ), ( , )..............., ( , ).n nx y x y x y  Denoting 
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the high temperatures as the “y-data”, or response data, and the low temperatures as the 

“x-data”, or explanatory data, equations (3) provide,               

( ) ( ) ( )
2 2 2

2 243.34 F,    56.28 F,    340.943 F ,  296.144 F , 299.191 F ,  and 

299.191
                                              0.9416                                  

340.943 296.144

x y xy

xy
xy

x y

x y S S S

S
r

S S

= = = = =

= = =
 

      (4)
                             

where the bivariate sample size is 32.n =   Substituting the statistics in equations (4) into 

equations (3) gives 

                      

   
=    

  

= − = −  =

296 .144
=(0 .9416) = 0 .8776    an d     

| 340 .943

56 .28 F 0 .8776 43 .34 F 18 .2448 F .
| |

y

x
xy

S
m

y x S

b y m x
y x y x

r

                          (5) 

Equations (5) permits writing the Least Squares Regression of high temperature on low 

temperature as 

           
= +

 +

                                        F (0 .878 ) F 18 .245 F

                                              or

F  = (0 .878 ) ( ) F 18 .245 F

ˆ

pred icted  h igh  tem perature actual low  tem perature

y x
                               

                                                                                                                                                     (6) 

using -310  precision.  The Least Squares regression line depicted in Figure 1 is specified by 

equation (6),  

Here, we intentionally use the notation 
|

m
y x

 and 
|

b
y x

 to denote the slope and 

intercept of the Least Squares Regression line for two reasons: (i) to explicitly demonstrate 

the dependence of the response variable, y, on the predictor variable, x, and (ii) to avoid 

confusion when discussing the slope,
|

m
x y

, intercept, 
|

b
x y

, of the Least Squares Regression 

of  “x on y”, which will be considered later. Using equation (6), Table 2 gives the Least 

Squares predicted high temperatures for each city identified in Table 1.  The “Residual” 

column gives the estimation error, defined by 

 

    Residual = Actual High Temperature - Least Squares Predicted High Temperature.        (7)            

 

Each residual provides both the magnitude and direction of the estimation error for that 

particular city. A positive residual is associated with under-prediction of the actual high 

temperature while a negative residual is affiliated with an over-prediction of the actual high 

temperature.  
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The aggregate estimation error is usually called the Standard Error about the Regression, 

denoted by sREG  and defined by    

                                                          
( )

( )

2

1

Residual

2

n

i

i

n
s ==

−


REG

                                                              (8) 

 

The data in Table 2 yield  

( )

( )

32
2

1

Residual
1,041.387

5.892 F,
2 30

i

i

n
s == = =

−


REG  

 

which can be interpreted as the “typical” (vertical) deviation of an actual data point from 

the regression line.  The square of the sample Pearson Correlation Coefficient, 2
xyr , called 

the sample Coefficient of Determination, is oftentimes used as a “goodness of fit” measure 

for Least Squares regression; here 22 (0.9416) 88.66%,xyr = = suggesting that approximately 

89% of the variation observed in the actual high temperatures for these thirty-two cities can 

be explained by the Least Squares Regression model of high temperature on low 

temperature. 

 

 

 

Table 2.  Least Squares Predicted High Temperatures with Residuals using Table 1 data. 
Predicted Predicted

City, State High Low High Residual City, State High Low High Residual

Amarillo, TX 51 29 43.707 7.293 Miami, FL 84 77 85.851 -1.851

Atlanta, GA 76 63 73.559 2.441 Milwaukee, WI 38 29 43.707 -5.707

Bangor, ME 54 28 42.829 11.171 Minneapolis, MN 30 26 41.073 -11.073

Billings, MT 21 9 26.147 -5.147 Mobile, AL 73 70 79.705 -6.705

Birmingham, AL 77 64 74.437 2.563 Montpelier, VT 51 28 42.829 8.171

Boston, MA 62 49 61.267 0.733 Nashville, TN 69 56 67.413 1.587

Buffalo, NY 48 36 49.853 -1.853 New Orleans, LA 63 46 58.633 4.367

Charlotte, NC 74 63 73.559 0.441 New York, NY 66 57 68.291 -2.291

Chicago, IL 46 36 49.853 -3.853 Phoenix, AZ 61 43 55.999 5.001

Cincinnati, OH 53 45 57.755 -4.755 Pittsburgh, PA 62 50 62.145 -0.145

Concord, NH 62 31 45.463 16.537 Salt Lake City, UT 29 16 32.293 -3.293

Denver, CO 28 16 32.293 -4.293 San Diego, CA 60 56 67.413 -7.413

Detroit, MI 50 34 48.097 1.903 San Francisco 51 40 53.365 -2.365

Houston, TX 83 73 82.339 0.661 Seattle, WA 41 36 49.853 -8.853

Jacksonville, FL 84 71 80.583 3.417 St. Louis, MO 52 38 51.609 0.391

Lincoln, NE 33 15 31.415 1.585 Washington, DC 69 57 68.291 0.709
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2. Inverse Regression with Low and High Temperature Data 

Let us now revisit the Low and High Temperature Data in Table 1 from a slightly different 

perspective.  That is, given a value for the high temperature, invert the Least Squares 

Regression equation to estimate the low temperature that gave rise to that particular city’s 

high temperature.  For example, New Orleans, LA had an actual high temperature reading 

of 63°F and an actual low temperature reading of 46°F on Christmas Day of 2015.  Inputting 

this high temperature directly into equation (6) and inverting produces: 

       

63∘ F = (0.878)x̂∘ F + 18.245∘ F  ⇒  x̂∘F =
(63∘ F −18.245∘F)

0.878
= 50.974∘F ≈ 51∘F                (9) 

 

using integer precision.  So, given a high temperature, it is a simple matter to invert the 

Least Squares Regression equation to produce an estimate of a city’s corresponding low 

temperature on that day.  Table 3 gives the Inverse Regression estimated low temperatures 

for all thirty-two American cities shown in Table1, along with their corresponding residuals. 

 

 
 

 Although Inverse Regression is a natural way to estimate an abscissa value using an 

ordinate value and inverting a previously obtained Least Squares Regression equation 

| |
y m x b

y x y x
= + , it must be clearly understood that such estimation is not equivalent to 

Least Squares Regression of “x on y”, where the roles of x and  y are interchanged in 

equation (1).  Nonetheless, Inverse Regression should be adequate in many practical 

situations, at least for a quick estimate of an abscissa. 

 To formalize the concept of Inverse Regression, assume that a reasonable linear 

trend exists between a response variable y and a predictor variable x, and Least Squares 

          Table 3.  Inverse Least Squares Predicted LowTemperatures with Residuals using Table 1 data. 
Predicted Predicted

City, State High Low Low Residual City, State High Low Low Residual

Amarillo, TX 51 29 37.325 -8.325 Miami, FL 84 77 74.929 2.071

Atlanta, GA 76 63 65.813 -2.813 Milwaukee, WI 38 29 22.512 6.488

Bangor, ME 54 28 40.744 -12.744 Minneapolis, MN 30 26 13.396 12.604

Billings, MT 21 9 3.140 5.860 Mobile, AL 73 70 62.394 7.606

Birmingham, AL 77 64 66.952 -2.952 Montpelier, VT 51 28 37.325 -9.325

Boston, MA 62 49 49.860 -0.860 Nashville, TN 69 56 57.836 -1.836

Buffalo, NY 48 36 33.907 2.093 New Orleans, LA 63 46 50.999 -4.999

Charlotte, NC 74 63 63.534 -0.534 New York, NY 66 57 54.418 2.582

Chicago, IL 46 36 31.628 4.372 Phoenix, AZ 61 43 48.720 -5.720

Cincinnati, OH 53 45 39.604 5.396 Pittsburgh, PA 62 50 49.860 0.140

Concord, NH 62 31 49.860 -18.860 Salt Lake City, UT 29 16 12.256 3.744

Denver, CO 28 16 11.117 4.883 San Diego, CA 60 56 47.581 8.419

Detroit, MI 50 34 36.186 -2.186 San Francisco 51 40 37.325 2.675

Houston, TX 83 73 73.789 -0.789 Seattle, WA 41 36 25.930 10.070

Jacksonville, FL 84 71 74.929 -3.929 St. Louis, MO 52 38 38.465 -0.465

Lincoln, NE 33 15 16.814 -1.814 Washington, DC 69 57 57.836 -0.836
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Regression of “y on x” has already been quantified as ,
| |

y m x b
y x y x

= + using equations (2).  

Inverting produces 

 

1| |
,

| | |

y b b
y x y x

x y
m m m

y x y x y x

   − −
   = = +
   
   

                                                 (10) 

so that the Inverse Regression estimating equation is 

                  ,ˆ
Inv Invm y bx = +                                                              (11) 

where    
1 1

|

x
Inv

y xy y
xy

x

S
m

Sm r S
y x r

S

 
      = = =  
             

  

 and   

 

| |

| |

x
Inv

xy y

b m x y
Sy x y x

b x y
m m r S

y x y x

   − −  
   = = = − 

    
    

       (12)                                                                                                                                               

 

respectively, denote the Inverse Regression slope and intercept coefficients, provided 

0.
|y x

m   

The results of equations (4), (5) and (6) substituted into equations (12) yield 

 

                  
1 1

1.1395
0.8776

|
Inv

y x

m
m

 
  = = =    

 

 and    
18.2448|

20.7894
0.8776

|
Inv

b
y x

m
y x

b
 −

−  = = = −    
 

     (13) 

 

So, the Inverse Regression estimating equation for low temperature from high temperature 

is 

 

x̂∘ F = (1.1395)y∘ F − 20.7894∘F 

 

                                                                       or                                                             (14)     

predicted low temperature∘ F  = (1.1395) × (actuall high temperature)∘ F − 20.7894∘F,        

                                                                                                                                           

which is the equation used to compute the low temperature estimates, and their residuals, 

shown in Table 3.  For New Orleans, LA, equation (14) gives 

                           = − = F (1.1395)63 F 20.7894 F 50.9991 F 51 F      x̂  

which matches the result in equation (9), allowing for slight round-off error.  The residual is  
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Residual 46 F 50.9991 F 4.9991 F,

New Orleans
= − = −  

matching the corresponding entry in Table 3.  

               

3. Comparing and Contrasting Inverse Regression with Least Squares Regression 

For Least Squares Regression of “x on y”, the roles of the response and predictor variables 

are interchanged, and this is another way to view the low and high temperature data in 

Table 1. That is, given data points 1 1 2 2( , ), ( , )..............., ( , ),n ny x y x y x  equations (1) – (3) 

become 

                                    ( ) ( )
2 2

1 1
|

( ) ( )
|

n n

i i
x y

x m y b x yi i i ix y
= =

− +  − +  m b                                (15) 

where 

                                 
 

= = − 
 
 

          a n d           ,
| | |

x
y x

y

S
x y

x y x y x yS
m r b m                              (16) 

with 

( ) ( ) ( )( )
2 21 1 1

1 1

2 2
,

1 1
,    ,    ,   ,  

( 1) ( 1) ( 1)

                                                           and  .

n n n

n n
i i i

i i

x y xy

yx
yx

y x

i i i i

i i

x x y y x x y y

x x y y S S S
n n n n n

S
r

S S

= = =

= =

− − − −

= = = = =
− − −

=


  
 

    (17)                                                                                                                                                                                                    

where 
|x y

m and 
|x y

b are the unique constants minimizing equation (15) for all real 

numbers m and b. 

Since ,yx xyS S=  it follows that .yx xyr r=  Using the results in equations (4), 

 

                                        

=

= − 

340 .943
(0 .9416) =1 .0103      a n d           

| 296 .144

43 .34 F (1 .0103 56 .28 F)= -13 .5197 F
|

x y

x y

m

b

                                 (18) 

 

Equations (18) give rise to the Least Squares Regression equation of low temperature from 

high temperature as 

 

     
= −

 −

                                        F (1 .0103) F 13 .5197 F

                                              or

F  = (1 .0103) ( ) F 13 .5197 F

ˆ

pred icted  low  temperature actual h igh  tem perature

x y
           

                                                                                                                                                    (19) 

using 310−  precision.  

For New Orleans, LA, equation (19) gives 
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                =  − = F (1.0103) 63 F 13.5197 F 50.1292 F 50 F .     x̂  

with residual                                                                                                                                           (20) 

                                  
Residual 46 F 50.1292 F 4.1292 F,

New Orleans
= − = −                                                                                           

 

For direct city-by-city comparison, Table 4 provides results for both the Inverse 

Regression and Least Squares Regression of “x (Low temperature) on y (High 

temperature)”.  

 

 
 

Of course, it is not surprising that the estimated standard error about the regression 

line value of 6.332 °F for the Least Squares Regression of  “x on y” is smaller than the 

estimated standard error about the regression line value of 6.714° F for the Inverse 

 Table 4.  Comparisons of Inverse Regression and  Least Squares Regression of Low on High Temperature using Table 1 data. 

Inverse Regression Inverse Regression Inverse Regression LS x  on y  Regression LS x  on y  Regression LS x  on y  Regression

City, State High Low Predicted Low Residual Squared Residual Predicted Low Residual Squared Residual

Amarillo, TX 51 29 37.325 -8.325 69.307 38.006 -9.006 81.101

Atlanta, GA 76 63 65.813 -2.813 7.911 63.263 -0.263 0.069

Bangor, ME 54 28 40.744 -12.744 162.399 41.037 -13.037 169.950

Billings, MT 21 9 3.140 5.860 34.338 7.697 1.303 1.699

Birmingham, AL 77 64 66.952 -2.952 8.715 64.273 -0.273 0.075

Boston, MA 62 49 49.860 -0.860 0.739 49.119 -0.119 0.014

Buffalo, NY 48 36 33.907 2.093 4.382 34.975 1.025 1.051

Charlotte, NC 74 63 63.534 -0.534 0.285 61.243 1.758 3.089

Chicago, IL 46 36 31.628 4.372 19.118 32.954 3.046 9.278

Cincinnati, OH 53 45 39.604 5.396 29.116 40.026 4.974 24.739

Concord, NH 62 31 49.860 -18.860 355.685 49.119 -18.119 328.295

Denver, CO 28 16 11.117 4.883 23.848 14.769 1.231 1.516

Detroit, MI 50 34 36.186 -2.186 4.777 36.995 -2.995 8.972

Houston, TX 83 73 73.789 -0.789 0.623 70.335 2.665 7.101

Jacksonville, FL 84 71 74.929 -3.929 15.434 71.346 -0.346 0.119

Lincoln, NE 33 15 16.814 -1.814 3.291 19.820 -4.820 23.234

Miami, FL 84 77 74.929 2.071 4.291 71.346 5.655 31.973

Milwaukee, WI 38 29 22.512 6.488 42.099 24.872 4.128 17.043

Minneapolis, MN 30 26 13.396 12.604 158.871 16.789 9.211 84.837

Mobile, AL 73 70 62.394 7.606 57.850 60.232 9.768 95.410

Montpelier, VT 51 28 37.325 -9.325 86.957 38.006 -10.006 100.112

Nashville, TN 69 56 57.836 -1.836 3.371 56.191 -0.191 0.036

New Orleans, LA 63 46 50.999 -4.999 24.991 50.129 -4.129 17.050

New York, NY 66 57 54.418 2.582 6.669 53.160 3.840 14.745

Phoenix, AZ 61 43 48.720 -5.720 32.720 48.109 -5.109 26.098

Pittsburgh, PA 62 50 49.860 0.140 0.020 49.119 0.881 0.776

Salt Lake City, UT 29 16 12.256 3.744 14.017 15.779 0.221 0.049

San Diego, CA 60 56 47.581 8.419 70.886 47.098 8.902 79.240

San Francisco 51 40 37.325 2.675 7.155 38.006 1.994 3.978

Seattle, WA 41 36 25.930 10.070 101.403 27.903 8.097 65.568

St. Louis, MO 52 38 38.465 -0.465 0.216 39.016 -1.016 1.032

Washington, DC 69 57 57.836 -0.836 0.699 56.191 0.809 0.654

                                               Sum of Squared Residuls = 1352.181 1198.904

              Standard Error about the Regression Line = 6.714° F 6.322° F
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Regression of  “x on y”.  This is so precisely because the Least Squares criterion demands 

minimizing the sum of square residuals, which is not the criterion used for Inverse 

Regression.  However, in this particular application the absolute difference  

16.332 6.714 .382 
2

F F F F −    = is of little practical importance. 

Table 5 gives a side-by-side comparison of the slopes and intercepts for two 

regression models,  

 

 
 

while Figure 2 provides the corresponding overlay scatter plots, along with the data points. 

The Inverse 

  

 
 

Table 5.  Comparison of Slopes and Intercepts of Estimating Equations

Slope Intercept

Inverse Regression of High Temperature 1.1395 -20.7894
on Low Temperature

Least Squares Regression of 1.0103 -13.5197
Low Temperature on High Temperature
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Regression and Least Squares Regression of “x on y” give rise to different equations for 

estimating a city’s low temperature reading based on its corresponding high temperature 

reading.  A moment’s reflection shows why. In general, two different criteria are used: 

Inverse Regression employs inverting the Least Squares Regression of “y on x”, while Least 

Squares Regression of “x on y” is used directly with the data points, where the x and y roles 

are reversed.  So, there should be no expectation that the methods would yield the same 

slopes and/or intercepts, and, in general, they do not.   

Finally, Figure 3 presents the standardized, residual plots versus the low temperature 

readings for both models. The broken, polygonal line connecting solid squares represents 

the residual plot associated with the Inverse Regression model. The broken, polygonal line 

connecting solid circles represents the residual plot associated with the Least Squares 

Regression of low temperature on high temperature. 

 

                  Figure 3.  Residual Plots:   (Inverse Regression)    (Inverse Regression) 
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Tables 4 and 5 along with figures 2 and 3 suggest that there is good reason to believe that 

Inverse Regression may sometimes be successfully used in applications. However, delving 

deeper into that realm is the subject of Part II of our bipartite exposition.  
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4.  Conclusion 

The topic of Inverse Regression, a natural companion to Least Squares Regression, has 

been considered here. Two motivating examples where Inverse Regression is useful are 

first considered. Next, a brief review of Least Squares Regression using low and high 

temperatures for thirty-two American cities was presented. This data set was used as a 

foundation for comparing Inverse Regression with Least Squares Regression. It is seen that, 

in some instances, Inverse Regression is a close competitor of Least Squares regression 

when the original explanatory and response variables are interchanged. A deeper, 

comparative investigation is ventured in Part II of this series of articles. 
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