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Abstract  

This article is a continuation of the authors’ previously 
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“The benefits of teaching inverse regression alongside 
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comparisons”. In Part I of this companion series, a 

foundational exposition comparing Inverse Regression 

and Least Squares Regression was undertaken using 

temperature data for thirty-two American cities. Deeper 

relationships are explored in this article (Part II of this 

series). The goal is to contrast the estimates provided by 

both regression methods using a collection of corollaries 

that are accessible to undergraduate mathematics and 

science students who have studied Least Squares 

Regression. Collectively, these two articles demonstrate 

how to purposely enhance a general discussion of Least 

Squares Regression.  
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Public Interest Statement 

In Part I of this companion series, a foundational exposition comparing Inverse Regression 

and Least Squares Regression was undertaken using temperature data for thirty-two 

American cities. Deeper relationships are explored here in Part II of this series. The goal is to 

contrast the estimates provided by both regression methods using a collection of corollaries 

that are accessible to undergraduate mathematics and science students who have studied 

Least Squares Regression. 

 

1.  Introduction 

From Part I, given a collection of points  (x1, y1), (x2, y2). . . . . . . . . . . . . . . , (xn, yn) for which a 

linear trend model is reasonable, the Inverse Regression and Least Squares “x on y” 

Regression techniques provide equations for estimating an “x” variable from knowledge of 

a corresponding “y” variable associated with the trend.  Recall from that discussion that the 

Least Squares “x on y” Regression actually uses the Least Squares methodology with the 

transposed coordinates (y1, x1), (y2, x2). . . . . . . . . . . . . . . , (yn, xn), while Inverse Regression 

uses the original ordered pairs (x1, y1), (x2, y2). . . . . . . . . . . . . . . , (xn, yn) with the usual Least 

Squares “y on x” Regression equation simply inverted. In general, the estimating equations 

are: 

           Least Squares “x on y” Regression:                                 Inverse Regression:  

           �̂�𝑖 = 𝑚𝑥|𝑦𝑦𝑖 + 𝑏𝑥|𝑦                       �̃�𝑖 = 𝑚𝐼𝑛𝑣𝑦𝑖 + 𝑏𝐼𝑛𝑣               (1)                                           

where  

             𝑚𝑥|𝑦 = 𝑟𝑦𝑥 (
𝑆𝑥

𝑆𝑦
) ,  𝑏𝑥|𝑦 = �̄� − 𝑚𝑥|𝑦�̄�   and    𝑚𝐼𝑛𝑣 = (

1

𝑚𝑦|𝑥
) = (

𝑆𝑥

𝑟𝑥𝑦𝑆𝑦
),  𝑏𝐼𝑛𝑣 = (

−𝑏𝑦|𝑥

𝑚𝑦|𝑥
) =

�̄� − (
𝑆𝑥

𝑟𝑥𝑦𝑆𝑦
) �̄� 

with 

            �̄� =
1

𝑛
∑ 𝑥𝑖

𝑛
𝑖=1 ,  �̄�  =

1

𝑛
∑ 𝑦𝑖

𝑛
𝑖=1 ,   𝑆𝑥

2 =
∑ (𝑥𝑖−�̄�)2𝑛

𝑖=1

(𝑛−1)
, 𝑆𝑦

2 =
∑ (𝑦𝑖−�̄�)2,𝑛

𝑖=1

(𝑛−1)
 𝑆𝑥𝑦 =

∑ (𝑥𝑖−�̄�)(𝑦𝑖−�̄�)𝑛
𝑖=1

(𝑛−1)
,  

and 

            𝑟𝑥𝑦 = 𝑟𝑦𝑥 = 𝑟 =
𝑆𝑥𝑦

𝑆𝑥×𝑆𝑦
. 

For the entire discussion, the ”tilde” symbol is associated with estimates or statistics 

computed using the Inverse Regression methodology, while the “hat” symbol is associated 

with similar quantities computed using the Least Squares technique.  Remaining notation is 

consistent with that defined in Part I. 
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2.  Comparing Inverse Regression and Least Squares “x on y” Regression 

The purpose in the section is to explore relationships between these methods of estimation.  

Using direct substitution into the equations in (1), 

           �̂�𝑖 = 𝑚𝑥|𝑦𝑦𝑖 + 𝑏𝑥|𝑦                                          �̃�𝑖 = 𝑚𝐼𝑛𝑣𝑦𝑖 + 𝑏𝐼𝑛𝑣 

           �̂�𝑖 = 𝑚𝑥|𝑦𝑦𝑖 + (�̄� − 𝑚𝑥|𝑦�̄�)                          �̃� = (
1

𝑚𝑦|𝑥
) 𝑦𝑖 + (

−𝑏𝑦|𝑥

𝑚𝑦|𝑥
) 

           ∴ (�̂�𝑖 − �̄�) = 𝑚𝑥|𝑦(𝑦𝑖 − �̄�)                         ∴ 𝑚𝑦|𝑥(�̃�𝑖 − �̄�) = (𝑦𝑖 − �̄�)                                             (2)                            

Note also that  

           𝑚𝑥|𝑦𝑚𝑦|𝑥 = [𝑟𝑦𝑥 (
𝑆𝑥

𝑆𝑦
)] [𝑟𝑥𝑦 (

𝑆𝑦

𝑆𝑥
)] = 𝑟2                                                                                        (3) 

(Product of slopes is the square of sample Pearson Correlation Coefficient), 

and 

          (�̂�𝑖 − �̄�) = 𝑚𝑥|𝑦(𝑦𝑖 − �̄�) =  𝑚𝑥|𝑦𝑚𝑦|𝑥(�̃�𝑖 − �̄�)= 𝑟2(�̃�𝑖 − �̄�)                                                         (4) 

using equations (2) and (3). 

Before proceeding further, recall that the usual Least Squares Decomposition of the 

Total Sum of Squares (SST), (See Peck (2015)), in this context is    

           SST:= ∑ (xi − x̄)2n
i=1 = ∑ (xi − x̂i)

2n
i=1 + ∑ (x̂i − x̄)2n

i=1 : = SŜE + SŜR,                                     

(5) 

where the defined terms SŜE and SŜR denote the usual residual (or error) and regression 

sums of squares, respectively.  Using equations (1) – (4), it is easy to verify decomposition 

(5) directly since 

            𝑆�̂�𝑅 = ∑ (�̂�𝑖 − �̄�)2𝑛
𝑖=1 = ∑ 𝑚𝑥|𝑦

2 (𝑦𝑖 − �̄�)2𝑛
𝑖=1 = (

𝑟𝑆𝑥

𝑆𝑦
)

2

∑ (𝑦𝑖 − �̄�)2𝑛
𝑖=1 = (

𝑟2𝑆𝑥
2

𝑆𝑦
2 ) (𝑛 −

1)𝑆𝑦
2 = 𝑟2 ∑ (𝑥𝑖 − �̄�)2𝑛

𝑖=1 ,         

                                                                          and                                                                           (6) 

          

( ) ( )

( )

2
2 2 2 2

| | |

1 1

2

2 2 2 2 2 2 2

2 2 2

ˆ ˆ( ) ( ) ( )  ( 1) 2( 1) ( 1)( )

( 1) 2( 1) ( 1) ( 1) 2( 1) ( 1)

( 1) 1 (1 ) (

n n

i i i i x y i x x y x y x y y

i i

x x
x x y y x x x

y y

x

SSE x x x x m y y n S n m rS S n m S

rS rS
n S n rS S n S n S n r S n r S

S S

n S r r

= =

 = − = − − − = − − − + − 

   
= − − − + − = − − − + −      

   

= − − = −

 

2

1

) .
n

i i

i

x x
=

−
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Therefore, the Least Squares Decomposition of the Total Sum of Squares can alternately be 

written as 

           𝑆𝑆𝑇 = ∑ (𝑥𝑖 − �̄�)2𝑛
𝑖=1 = (1 − 𝑟2)∑ (𝑥𝑖 − �̄�)2𝑛

𝑖=1 + 𝑟2 ∑ (𝑥𝑖 − �̄�)2𝑛
𝑖=1 = 𝑆�̂�𝐸 + 𝑆�̂�𝑅                       

(7) 

Now, by its very definition, the estimate x̂i is superior to estimate x̃i in the Least 

Squares sense (and a proof is given in Corollary 2 below).  That is,    

 

          𝑆�̂�𝐸: = ∑ (𝑥𝑖 − �̂�𝑖)
2𝑛

𝑖=1 ≤ ∑ (𝑥𝑖 − �̃�𝑖)
2𝑛

𝑖=1 : = 𝑆�̃�𝐸,                                                                        (8) 

where SŜE:= ∑ (xi − x̂i)
2n

i=1 is defined to be the residual (or error) sum of squares for the 

Least Squares “x on y” Regression, and SS̃E:= ∑ (xi − x̃i)
2n

i=1 is defined to be the residual 

(or error) sum of squares for the Inverse Regression of  y on x.  However, given the 

computational simplicity of the Inverse Regression technique, a natural question is: “Is the 

difference SS̃E − SŜE or percentage error of much practical importance?”  That question is 

considered next with the aid of two corollaries. 

Corollary 1: The residual sum of squares, 𝑆�̃�𝐸 = ∑ (𝑥𝑖 − �̃�𝑖)
2𝑛

𝑖=1 , from the Inverse Regression of 

y on x 

satisfies 

          𝑆�̃�𝐸 = ∑ (𝑥𝑖 − �̃�𝑖)
2𝑛

𝑖=1 = (
1

𝑟2
− 1)∑ (𝑥𝑖 − �̄�)2𝑛

𝑖=1 ≥ 0.                                                                  (9) 

 

The regression sum of squares, 𝑆�̃�𝑅 = ∑ (�̃�𝑖 − �̄�)2𝑛
𝑖=1 , from the Inverse Regression of y on x 

satisfies 

          𝑆�̃�𝑅 = ∑ (�̃�𝑖 − �̄�)2𝑛
𝑖=1 = (

1

𝑟2
)∑ (𝑥𝑖 − �̄�)2𝑛

𝑖=1 ≥ 0.                                                                         (10) 

provided 𝑟 ≠ 0.  

 

         Proof: Using equations (1) – (4) and expanding, 

𝑆�̃�𝐸 = ∑(𝑥𝑖 − �̃�𝑖)
2

𝑛

𝑖=1

= ∑[(𝑥𝑖 − �̅�) + (�̅� − �̃�𝑖)]
2

𝑛

𝑖=1

= ∑[(𝑥𝑖 − �̅�)2 − 2(𝑥𝑖 − �̅�)(�̃�𝑖 − �̅�) + (�̃�𝑖 − �̅�)2]

𝑛

𝑖=1

 

                     = ∑[(𝑥𝑖 − �̅�)2 −
2

𝑟2
(𝑥𝑖 − �̅�)(𝑥�̂� − �̅�)

𝑛

𝑖=1

+
1

𝑟4
(𝑥�̂� − �̅�)2]                                              using (4) 
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                     = ∑(𝑥𝑖 − �̅�)2

𝑛

𝑖=1

−
2𝑚𝑥|𝑦

𝑟2
∑(𝑥𝑖 − �̅�)(𝑦𝑖 − �̅�)

𝑛

𝑖=1

+
𝑚𝑥|𝑦

2

𝑟4
∑(𝑦𝑖 − �̅�)2

𝑛

𝑖=1

                         using (2) 

2

2 2

2 4

2

2 2

2 4

2

2

using (1)
2 1

( 1) ( 1) ( 1)                 

2 1
( 1) ( 1) ( 1)  

1
1 ( 1)

x x
x xy y

y y

x x
x x y y

y y

x

rS rS
n S n S n S

r S r S

rS rS
n S n rS S n S

r S r S

n S
r

      
 = − − − + −                

      
 = − − − + −                

 
= − − 
 

2

2
1

1
1 ( ) 0                

n

i

i

x x
r =

 
= − −  
 



      

                                                                                   

Now, using equation (4) 

              𝑆�̃�𝑅 = ∑(�̃�𝑖 − �̅�)2

𝑛

𝑖=1

= ∑[(
1

𝑟2
) (𝑥�̂� − �̅�)]

2𝑛

𝑖=1

 

                       

= (
1

𝑟4
)∑(�̂�𝑖

𝑛

𝑖=1

− �̅�)2                                                                                                            using (6)             

                       = (
1

𝑟4
) [𝑟2 ∑(𝑥𝑖 − �̅�)2

𝑛

𝑖=1

] 

                       = (
1

𝑟2
)∑(𝑥𝑖 − �̅�)2

𝑛

𝑖=1

 

                                     

This corollary is numerically verified in the example below. 
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Example 1: Recall from Part I that Sx
2 = (32 − 1) ∗ 340.943 = 10,569.233 and r = 0.9416. 

Also, the bottom portion of Table 4 of Part I gives  SS̃E = 1,352.181, which roughly agrees 

with 

                𝑆�̃�𝐸 = ∑(𝑥𝑖 − �̃�𝑖)
2

𝑛

𝑖=1

= (
1

𝑟2
− 1)∑(𝑥𝑖 − �̄�)2

𝑛

𝑖=1

≃ (
1

0.94162
− 1) × 10,569.233

= 1,351.709, 

aside from some slight round-off error in the table itself.  Likewise,  

                𝑆�̃�𝑅 = ∑(�̃�𝑖 − �̄�)2

𝑛

𝑖=1

= (
1

𝑟2
)∑(𝑥𝑖 − �̄�)2

𝑛

𝑖=1

= (
1

0.94162
) × 10,569.233

= 11,920.942 

Note that equations (6) and (7) are also consistent with the computed results given in Table 4 

of Part I since,  

                𝑆�̂�𝐸 = (1 − 𝑟2)∑(𝑥𝑖 − �̄�𝑖)
2

𝑛

𝑖=1

= (1 − 0.94162) × 10.569.233 = 1,198.439 

and 

                𝑆�̂�𝑅 = 𝑟2 ∑(𝑥𝑖 − �̄�)2

𝑛

𝑖=1

= (0.94162) × 10,569.233 = 9,370.794 

again, aside from slight round-off error.                                                                                                    

Corollary 2: Provided r ≠ 0, the residual sum of squares, SŜE = ∑ (xi − x̂i)
2n

i=1 , from the 

Least Squares Regression of  x on y and the residual sum of squares, SS̃E = ∑ (xi − x̃i)
2n

i=1 , 

from the Inverse Regression of  y on x satisfy 

  𝑆�̃�𝐸 − 𝑆�̂�𝐸 = [
1

𝑟
− 𝑟]

2

∑(𝑥𝑖 − �̄�𝑖)
2

𝑛

𝑖=1

≥ 0, 

 

with equality prevailing if and only if 𝑟 = ±1.  
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Proof: Using Corollary 1, equations (6) and expanding gives 

       𝑆�̃�𝐸 − 𝑆�̂�𝐸 = ∑(𝑥𝑖 − �̃�𝑖)
2

𝑛

𝑖=1

− ∑(𝑥𝑖 − 𝑥�̂�)
2

𝑛

𝑖=1

= (
1

𝑟2
− 1)∑(𝑥𝑖 − �̅�)2

𝑛

𝑖=1

− (1 − 𝑟2)∑(𝑥𝑖 − �̅�)2

𝑛

𝑖=1

             

                                     = [(
1

𝑟2
− 1) − (1 − 𝑟2)]∑(𝑥𝑖 − �̅�)2

𝑛

𝑖=1

= [𝑟2 +
1

𝑟2
− 2]∑(𝑥𝑖 − �̅�)2

𝑛

𝑖=1

 

                                     = [
(1 − 𝑟2)2

𝑟2
]∑(𝑥𝑖 − �̅�)2

𝑛

𝑖=1

= [
1

𝑟
− 𝑟]

2

∑(𝑥𝑖 − �̅�)2

𝑛

𝑖=1

≥ 0, 

and it is simple to show that [
1

𝑟
− 𝑟]

2

= 0 ⇔ 𝑟 = ±1.                           

Example 2:  Using Corollary 2 and the numerical results of Example 1, the absolute difference 

in these error sums of squares for the 32-city low and high temperature data in Part I is 

             |𝑆�̃�𝐸 − 𝑆�̂�𝐸| = [
1

𝑟
− 𝑟]

2

∑(𝑥𝑖 − �̄�𝑖)
2

𝑛

𝑖=1

= [
1

0.9416
− 0.9416]

2

× 10,569.233

= 153.270. 

 

Corollary 3: The percentage error, 𝑃𝐸𝑆𝑆𝐸 , , in 𝑆�̃�𝐸 = ∑ (𝑥𝑖 − �̃�𝑖)
2 𝑛

𝑖=1 over 𝑆�̂�𝐸 = ∑ (𝑥𝑖 −𝑛
𝑖=1

�̂�𝑖)
2is 

𝑃𝐸𝑆𝑆𝐸 = 100 × [
1

𝑟2
− 1] ≥ 0, 

 

provided 𝑟 ≠ 0, with equality prevailing if and only if 𝑟 = ±1.                                                         

 

 Proof: Using the two previous corollaries, 

              100% × |
𝑆�̃�𝐸 − 𝑆�̂�𝐸

𝑆�̂�𝐸
| = 100% × |

[
1
𝑟

− 𝑟]
2

∑ (𝑥𝑖 − �̅�)2𝑛
𝑖=1

(1 − 𝑟2)∑ (𝑥𝑖 − �̅�)2𝑛
𝑖=1

| = 100% × |
[
1
𝑟

− 𝑟]
2

(1 − 𝑟2)
| 

                                                         = 100% × |

1
𝑟2 (1 − 𝑟2)2

(1 − 𝑟2)
| = 100% × (

1

𝑟2
− 1) ≥ 0 
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 with equality clearly prevailing if and only if 𝑟 = ±1.                                                         

 

 

Example 3:  Using Corollary 3 with 𝑟 = 0.9416,  

              𝑃𝐸𝑆𝑆𝐸 = 100% × [
1

𝑟2
− 1] = 100% × [

1

0.94162
− 1] = 100% × (0.12789)

= 12.789%. 

Also, direct computation from Table 4 of Part 1 gives, 

              100% × |
𝑆�̃�𝐸 − 𝑆�̂�𝐸

𝑆�̂�𝐸
| = 100% × |

1,352.181 − 1,198.904

1,198.904
| = 12.785%, 

with the results agreeing aside from slight round-off error. 

Corollary 4: Suppose r ≠ 0. If  Ŝe = √
SŜE

(n−1)
 denotes the sum of squares about the regression 

line, from the Least Squares Regression of  x on y, and S̃e = √
SS̃E

(n−1)
 denotes the sum of 

squares about the regression line, from the Inverse Regression of  y on x, then the 

percentage error in the difference between these quantities, PEregression,  is 

              PEregression = 100% × [
S̃e − Ŝe

Ŝe

] = 100% [
1

|r|
− 1] ≥ 0, 

 

with equality prevailing if and only if r = ±1.                                                         

 

 

           Proof: Using the previous corollaries, 

 

              𝑃𝐸𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛 = 100% × [
�̃�𝑒 − �̂�𝑒

�̂�𝑒

] = 100% ×

[
 
 
 
 
 
√ 𝑆�̃�𝐸

(𝑛 − 1) − √ 𝑆�̂�𝐸
(𝑛 − 1)

√ 𝑆�̂�𝐸
(𝑛 − 1)

]
 
 
 
 
 

= 100% × [
√𝑆�̃�𝐸

√𝑆�̂�𝐸
− 1] 
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  = 100% ×

[
 
 
 
 
√

(
1
𝑟2 − 1)∑ (𝑥𝑖 − �̅�)2𝑛

𝑖=1

(1 − 𝑟2)∑ (𝑥𝑖 − �̅�)2𝑛
𝑖=1

− 1

]
 
 
 
 

= 100% ×

[
 
 
 
 
√

(
1
𝑟2 − 1)

(1 − 𝑟2)
− 1

]
 
 
 
 

 

                                       = 100% × [
1

|𝑟|
− 1] ≥ 0 

 

with equality clearly prevailing if and only if 𝑟 = ±1.                                                                            

 

Example 4: 

Using Corollary 4 with 𝑟 = 0.94158,  

               𝑃𝐸𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛 = 100% [
1

|0.9416|
− 1] = 100% × 0.062 = 6.20% 

Also, direct computation from Table 4 of Part 1 gives, 

               𝑃𝐸𝑟𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛 = 100% × [
6.714 − 6.322

6.322
] = 100% × 0.0621 = 6.21% 

with the results agreeing aside from slight round-off error.             

 

It is fascinating to see the singularly important role played by the sample Pearson 

Correlation Coefficient in Corollaries (1) through (4).  Interestingly, Table 1 shows precisely 

how the percent errors proven in Corollaries 3 and 4 vary as a function of selected values of 

the sample Pearson Correlation Coefficient, r. 

 When comparing Inverse Regression of y on x with Least Squares Regression of  x on 

y, the percent error in the Standard Error about the Regression Line remains below 11.11% as 

long as the sample Pearson Correlation Coefficient  r ≥ 0.90. For positive values of r much 

smaller than 0.90, Inverse Regression of y on x is quite inferior to Least Squares Regression 

of  x on y. 
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Although these corollaries provide global comparisons between Inverse Regression 

and Least Squares “x on y” Regression, Corollary 5 targets the absolute difference in 

individual estimates. 

 

Corollary 5: Let (x1, y1), (x2, y2). . . . . . . . . . . . . . . , (xn, yn) be a collection of data points which 

have been used to construct Inverse Regression and Least Squares “x on y” Regression 

estimates, say x̃∗ and  x̃∗, which are both estimated at y∗, then 

(a) |x̃∗ − x̂∗| = |
1

r
− r| × (

Sx

Sy
) |y∗ − y̅| 

 

(b) lim
r→±1

|x̃∗ − x̂∗| = 0 

 

(c) |zx̃∗ − zx̂∗| = |
1

r
− r| × zy∗ 

 

where the summary statistics ȳ, Sx, Sy and r are as previously defined, and zx̃∗ =
(x̃∗−x̄)

Sx
, zx̂∗ =

(x̂∗−x̄)

Sx
  and zy∗ =

(y∗−ȳ)

Sy
 are the sample Z (standard) scores associated with x and y data, 

respectively. 

 

Table 1.  Percent Error in Residual Sums of Squares and Percent Error in the Standard 
Error about the Regression Line for Inverse Regression over Least Squares Regression  

Sample Pearson Percent Error in Residual Percent Error in the Standard 

Correlation Coefficient, r Sums of Squares Error about the Regression Line 

1.00 0.00 0.00 

0.98 4.12 2.04 

0.96 8.51 4.17 

0.94 13.17 6.38 

0.92 18.15 8.70 

0.90 23.46 11.11 

0.86 35.21 16.28 

0.84 41.72 19.05 

0.82 48.72 21.95 

0.80 56.25 25.00 
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Proof: For (a), use equations (2), (3) and (4) to get 

              |�̃�∗ − �̂�∗| = |(�̃�∗ − �̅�) − (�̂�∗ − �̅�)| = |(�̃�∗ − �̅�) − 𝑟2(�̃�∗ − �̅�)| 

                                = |(1 − 𝑟2)(�̃�∗ − �̅�)| = |[
(1 − 𝑟2)

𝑚𝑦|𝑥

] (𝑦∗ − �̅�)| 

                                = |[
(1 − 𝑟2)𝑆𝑥

𝑟𝑆𝑦

] (𝑦∗ − �̅�)| = |
1

𝑟
− 𝑟| × (

𝑆𝑥

𝑆𝑦

) × |𝑦∗ − �̅�| 

For (b), note that           

             lim
𝑟→±1

|�̃�∗ − �̂�∗| = lim
𝑟→±1

|
1

𝑟
− 𝑟| × (

𝑆𝑥

𝑆𝑦

) × |𝑦∗ − �̅�| =(
𝑆𝑥

𝑆𝑦

) × |𝑦∗ − �̅�| × lim
𝑟→±1

|
1

𝑟
− 𝑟|

= 0 

                

To show (c), algebraically rewrite (a) as follows, 

           |�̃�∗ − �̂�∗| = |
1

𝑟
− 𝑟| × (

𝑆𝑥

𝑆𝑦
) × |𝑦∗ − �̄�|  ⇔  |(�̃�∗ − �̄�) − (�̂�∗ − �̄�)| = |

1

𝑟
− 𝑟| × (

𝑆𝑥

𝑆𝑦
) ×

|𝑦∗ − �̄�|  

                                ⇔  |
(�̃�∗−�̄�)

𝑆𝑥
−

(𝑥∗−�̄�)

𝑆𝑥
| = |

1

𝑟
− 𝑟| × (|

(𝑦∗−�̄�)

𝑆𝑦
|)  ⇔  |𝑧𝑥∗ − 𝑧𝑥∗| = |

1

𝑟
− 𝑟| × |𝑧𝑦∗|.                                                                                        

 

Numerical verification of Corollary 5 for the city of New Orleans is shown in Example 5. 

 

Example 5: Table 4 of Part I shows the actual low and high temperatures on a given day in 

the U.S.A. to be 46 °F and 63 °F, respectively, for New Orleans, LA.  The Least Squares “Low 

on High” estimate is seen there to be x̂ = 50.129°F, while the Inverse Regression estimate 

is x̃ = 50.999°F.  So, the absolute difference is 

 

           |�̃� − �̂�| = |50.999 − 50.129| = 0.870                                                                                   (11) 

Yet, recall that the summary statistics Table 4 of Part I are 

              𝑆𝐿𝑜𝑤
2 = 340.943, 𝑆𝐻𝑖𝑔ℎ

2 = 294.144, �̄� = 𝐻𝑖𝑔ℎ = 56.28 and 𝑟 = 0.9416, 

and inputting these statistics into the right-hand side of result (a) of Corollary 5 gives    

              |�̃� − �̂�| = |
1

0.9416
− 0.9416| × √

340.943

294.144
|63 − 56.28| = 0.871,                                                 (12) 

which agrees with equation (11) aside from some slight round-off error. 



Research Journal in Mathematics, Econometrics and Statistics 

Page 17  Volume 2 (NO 1) 2021  

Mathematics, 

Econometrics & 

Statistics 

Conclusions 

Parts I and II of this companion series of articles address comparison of Inverse Regression 

of y on x with Least Squares Regression of x on y. Although Inverse Regression of y on x is 

inferior to Least Squares Regression of x on y in a “squared error” sense, there are 

instances, depending on the absolute value of the magnitude of the sample Pearson 

Correlation Coefficient, | r |, when the two methods yield comparable estimates for the 

calibration problem. Part I of this bipartite series is primarily concerned with a description 

on the calibration problem as the genesis for Inverse Regression, its development, and 

rudimentary comparisons with low and high temperature data for thirty-two American 

cities. On the other hand, Part II presents some theoretical comparisons that culminate in a 

collection of five curious corollaries suitable for an undergraduate research project. The 

results of the corollaries are accessible to students who have studied applied Least Squares 

Regression, while their proofs can be broached with mathematically more sophisticated 

students who are familiar with Least Squares Regression. In tandem, these articles offer 

many opportunities for instructors and students to delve deeper into the topic of 

Regression. 
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